
NASA TT F-10,854 

d 
rl 
I 

I% B. G. GALEXKIN'S METHOD I N  CALCULUS OF VARIATIONS AND I N  . .  
I 

, El El 
THE THEORY OF ELASTICITY 

Ya .  I. Perel'man 3 z 

Translation of "Metod B. G .  Galerkina v variatsionnom i s c h i s l e n i i  
i v t e o r i i  uprugosti" 

Prikladnaya Matematika i Mekhanika, 
V o l a  5, NO. 3, pp. 345-358, 1941 

(ACCESSION NUMBER) 0 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 
WASHINGTON, D. C. 20546 APRIL 1967 



NASA TT F-10,854 

B. G. GALERKI"S METHOD I N  C U U L U S  OF VARIATIONS AND I N  
THE THEORY OF ELASTICITY 

1 Ya.  I. Perel'man 

ABSTRACT. The author reviews the pr inc ip les  of 
Galerkin's  method f o r  the solution of problems of 
mechanics, and the r e l a t ion  of other  approximate methods 
( R i t z ,  Rayleigh, Trefftz, Leybenzon) to t h i s  method. 
A l i s t  of works i n  which Galerkin's  method i s  employed 
i s  given a t  t he  end of the  a r t i c l e .  

1. A work of B. G. Galerkin e n t i t l e  "Rods and Plates"  (Sterzhni  i /345* 
p la s t in ik )  appeared i n  "Vestnik inzhenerov," No. 19, 1915. I n  it the  author 
presented a new method f o r  t he  solut ion of many problems of s t r u c t u r a l  mechan- 
ics ,  comparing it to t he  Ritz  method. 

We permit ourselves t o  c i t e  an exposition of t he  nature of t h i s  method 
from t h i s  work. 

" L e t  there  be a rectangular p l a t e  f r ee ly  supported along t h e  edges which 
undergoes the  load p=f(x,y).  
f ace : 

Let us s e t  up the  equation f o r  the  e l a s t i c  sur- 

M M  

The element of the  coordinates i s  taken a t  one of t he  points, and the  
axes of t h e  coordinate are  directed along the  s ides  of the  rectangle. 

Equation (b)  s a t i s f i e s  the  conditions a t  the  ends, because w=O when x=O, 

2 2  2 2  
Y=O, %a, y=b; then a w/ax =O when x=O and x=a, as equally a w/ay =O when y=O 
and y=b. 

Subst i tut ing the  expression w in to  the  d i f f e r e n t i a l  equation of the  e l a s t i c  
surface on t h e  bent p l a t e  

we obta'in 

w m  

* 
Numbers i n  the  margin indicate  pagination i n  o r ig ina l  foreign t ex t .  
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I n  the  general case, w obviously does not s a t i s f y  equation ( e )  and can be 
only an approximate solut ion of t h e  problem. To determine the coeff ic ients  of 

we multiply both halves of equation (d)  by s in(  knx/a)sin( mry/b)dxdy and 

in tegra te  from 0 t o  a and from 0 t o  b. Then we obtain: 

whence 

where 

Examining equation (b) ,  we note tha t  

knx nxy \ 
wh = A,,, sin- sin - 9 , b .  

i .e . ,  t h e  e l a s t i c  surface w consis ts  of many e l a s t i c  surfaces, as if super- 
imposed. 

I n  t h i s  case t h e  r igh t  s ide  of equality ( e )  

ab . 
k x x  

i s  t h e  ac t ion  of  external  transverse forces when the  p l a t e  bends along the  
e l a s t i c  surface w when 42 =1." And fur ther :  kn n 

"Generalizing t h i s  technique, we may a r r ive  a t  the following. 

L e t  us propose a warped form of the p l a t e s  

such t h a t  each term cp n 

s u b s t i t u t e  t he  value of w i n t o  the  equation 

s a t i s f i e s  the  conditions along the  edges; then l e t  us 
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Then we obtain: 

Now, multiplying both halves of the equal i ty  by (p dxdy and k in tegra t ing  

over a l l  the  area of  the plate ,  we obtain n equations of  the form: 

This method may be applied both in  problems of e l a s t i c  osc i l la t ions  and I 
i n  problems of the s t a t i c s  of rods 

Thus, as i n  the  R i t z  method, 
ordinate" M c t i o n s  : 

W =  

1 1 1  and p la t e s .  

expressing the  displacement by several  'lco- 

such t h a t  each function cp (x,y) s ingly s a t i s f i e s  the  l imi t ing  conditions, 

academician Galerkin, contrary t o  Ritz, does not use the  po ten t i a l  energy, but 
equates t o  zero the  force of a l l  external and i n t e r n a l  forces on each of t he  
se lec ted  v i r t u a l  displacements f o r  which t h e  variationsof 6A cp 

coef f ic ien ts  of A may be considered generalized coordinates). 

n 

are used ( t h e  
n n  

n 

The idea of an approximate application of the  element of v i r t u a l  displace- 
ments t o  the  problem of mechanics appeared exceptionally fruitful .  /347 

The p o s s i b i l i t y  of t he  application by analogy of the method t o  problems 
of va r i a t ion  calculus, mathematical physics and t o  any functional equation i n  t h e  
hands of t h e  invest igator  appeared t o  be a powerful weapon whose value i s  dif- 
f i c u l t  t o  overestimate. 

I n  the  words of t he  Englishman Duncan ( r e f .  ll), "it i s  hardly possible  t o  
encounter a problem i n  mechanics concerning e l a s t i c  o r  other deformed bodies t o  
which t h e  Galerkin method might not be successfully applied." 

This asser t ion  may as wel l  be extended t o  problems concerning invariant  
systems ( r e f .  9 ) .  

Above we noted the  difference of t he  pr inc ip les  on which -the R i t z  and the  
Galerkin methods are based. The Ritz  method i s  inapplicable t o  nonconservative 
systems, while t h e  Galerkin method, d i r ec t ly  applicable t o  the  d i f f e r e n t i a l  

- P 

both t o  problems of t he  s t a t i c s  of  rods and p l a t e s  and t o  the  problem of t h e i r  
s t a b i l i t y ,  where the  author uses algebraic se r i e s  as wel l  as trigonometric s e r i e s .  

The work c i t e d  contains many f i n e  examples of t h e  appl icat ion of t h i s  method 
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equation, r e t a ins  i t s  force.  When both methods a re  applied equivalent r e s u l t s  
a re  obtained, such t h a t  i n  this l a s t  case the  Galerkin method has the  advantage 
of grea te r  simplicity,  f r e e  from the  necessity of obtaining the  expression of 
t he  functional.  (Having spec i f i ca l ly  t h i s  case i n  mind, Hencky ( r e f .  2) speaks 
of "the equally elegant and p rac t i ca l ly  applicable va r i e ty  of the  R i t z  method. " )  

2. Let us examine the  problem of t h e  minimum of t h e  in tegra l :  

I i 
J =  j j j  F ( ~ ,  y ,  z, u;, u ~ ,  u ~ ) d x ,  d y d z , \  

where V i s  the  volume l imi ted  by the  surface C, and u i s  the  sought function of 
t h e  var iables  x,y,z. 

El. 
Let the values u be given t o  portions o f  the  surface 

Let us suppose t h a t  F has continuous p a r t i a l  der ivat ives  t o  t h e  t h i r d  order 

inclusive,  and t h a t  u ' ,u ' ,u '  are  continuous. The va r i a t ion  of i n t eg ra l  (1) 6s 
X Y Z  

Transforming the  l a s t  th ree  terms i n  the  r i g h t  s ide according t o  the  Gauss 
formula, we f ind:  

Here E designates the  l e f t  s ide o f  t he  corresponding Euler equation: 

( 3 )  
- -  

The required conditions of the  minimum are:  

~ J = o .  (4) 
L e t  us now suppose t h a t  t h e  approximate so lu t ion  of the  var ia t iona l  prob- 

lem can be presented i n  the  form: 

where u0(x,y,z) on the  surface s a t i s f i e s  t he  same conditions as does the  sought /348 

funct ion u( x,y, z), and c designates the undetermined coeff ic ients ,  while t he  
i 
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"coordinate" functions cp s a t i s f y  the  condition i 

as wel l  as t h e  conditions of d i f f e r e n t i a b i l i t y  and l i n e a r  independence. 

Then 

c a,, -- sc, 9. (x, y, 2 ) .  

Subs t i tu t ing  expression ( 7 )  i n t o  equation ( k ) ,  we obtain: 

( 7 )  

I n  view of t he  a rb i t r a r ines s  of the va r i a t ion  Sc we a r r i v e  a t  t he  sys- i t e m  of n equations: 

\ . .  

Thus. t he  requirement t h a t  t he  in t eg ra l s  of (9) vanish i s  e s s e n t i a l  not 
f o r  any v a r i a t i o n  Su, but for  n selected i n  a d e f i n i t e  way and having the  form 
6c .v . .  

e f f e c t  of a l l  t he  forces  vanish i n  a de f in i t e  way fo r  the  choices n of the  
v i r t u a l  displacements. 

I n  the  case of problems of mechanics w e  arrive a t  t he  need t h a t  t h e  
1 1  

. From t h e  n equations (9) obtained which a re  l i n e a r  i n  t h e  majority of cases 
i n  mechanics, generally speaking it i s  poss ib le  t o  determine t h e  unknown 
coe f f i c i en t s  c . ( i = l ,  2, ..., n) .  

1 

We s h a l l  designate t h e  equation of t h e  form (9)  the  Galerkin va r i a t iona l  
equation. 

The Galerkin equation fo r  any va r i a t iona l  problem may be wr i t ten  i n  ex- 
a c t l y  t h e  same way. 

We note i n  p a r t i c u l a r  t h a t  i f  expression ( 5 )  s a t i s f i e s  t h e  l imi t ing  con- 
d i t i o n s  for  t h e  whole surface C, t h e  Galerkin equations have t h e  form: 
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. fJ ' J  E T , d x d y d z = O  ( i = I ,  2, ... ,n).\ ( 9 ' )  
1 * .  

However, i f  the  approximate solut ion of t he  problem i s  se lec ted  such t h a t  
expression ( 5 )  i s  an i n t e g r a l  of the  Euler equation E O  but does not s a t i s f y  
the surface conditions, we a r r ive  a t  the system of equations: 

which cons t i tu tes  the  contents of the  Leybenzon method ( r e f .  17) and of t he  /349 . I equivalent T re f f t z  method , as w i l l  be obvious from the  following. 

3 .  If the  va r i a t iona l  problem i s  solved by the  R i t z  method and by the  
Galerkin method, i d e n t i c a l  r e s u l t s  w i l l  be obtained i f  one and the  same system 
of "coordinate" functions i s  selected.  

L e t  us use t h e  Ri tz  method t o  seek the  i n t e g r a l  m i n i m u m :  

L e t  us set 

11 I 

where u and the  coordinate f'unctions cp a re  determined as above. 
0 i 

L e t  t he  R i t z  equations be 

jjjFm=O (;=I, 2 ,..., n). 
rlck - V 

\ . I .  , .  . , --., ; . . . . _  However, - -  

- *. L_-- 

Transforming the  last th ree  terms according t o  the  Gauss formula, we 
have 

1 

( 3 )  

Treff tz .  Mathematical theory of e l a s t i c i t y  (Matematicheskaya t eo r iya  uprugosti) . 
Pages 162-163. 
6 



Thus, 

i . e . ,  we have arr ived a t  the  Galerkin var ia t ion equation (9) of the  previous 

I sec t ion  . 
The proven statement (obviously su i tab le  f o r  any va r i a t iona l  problem) 

permits a l l  t he  r e su l t s  obtained fo r  the R i t z  method, concerning the  proofs 
of t h e  existence of a solut ion and convergence i n  pa r t i cu la r  t o  be almost 
automatically t ransfer red  t o  the  Galerkin method. 

Along with th i s ,  s ince the  Galerkin method appears t o  be more p rac t i ca l ly  
applicable than the  Ritz  method, by s igni f icant ly  simplifying t h e  calculat ions 
it may completely replace t h i s  la t ter  and i n  a l l  those problems where possible,  
p a r t i c u l a r l y  i n  problems of mechanics, the  appl icat ion of both methods, f350 

4. The Galerkin equations f o r  the approximate so lu t ion  of t he  s p a t i a l  
problem of the  theory of e l a s t i c i t y  can be obtained both by d i r ec t  appl icat ion 
of t h e  element of v i r t u a l  displacements, and i n  view of t he  existence of an 
e l a s t i c  p o t e n t i a l  from the  pr inc ip le  of minimum po ten t i a l  energy. 

2 
I n  the  case of the  functional of t he  form 

where U, V, W a re  the  sought functions, while u and v a re  parameters determining 
t h e  pos i t i on  of t he  points  on the  surface, having s e t  

Incident ly .  the  equivalence of t he  methods of Leybenzon and Tref f tz  a l so  1 

follows from t h i s .  

* Compare Smirnov, Krylov, Kantorovich. Variat ional  Calculus (Variatsionnoye 
i s ch i s l en iye )  pp. 88-89. 7 



where U , V  , W  

t he  coordinate functions 'pi, $,,xi vanish f o r  C 

t o  t he  preceding, it i s  easy t o  obtain the  Galerkin Variat ional  equation. 

take the  values given f o r  U,V,W on p a r t  of t h e  surface C1, while 

1' 

0 0 0  

each s ingly (C=C,+C,), similar ly  

They have the form ( i=l, 2, . . . , n) : 

two more 2n equations f o r  V andW have a similar form. 

The f u l l  po ten t i a l  energy of the  e l a s t i c  body (expressed i n  displacments) 
Applying to it the  Galerkin va r i a t iona l  equa- 

1 

i s  a funct ional  of t he  form (1). 
t ions  (3), we proceed t o  the  system of 3n l i nea r  equations f o r  the  approximate 

so lu t ion  of s p a t i a l  problems i n  the. theory o f  e l a s t i c i t y  . 
The same r e s u l t  can be obtained by d i r ec t  appl icat ion of t h e  element of 

v i r t u a l  displacements, similar t o  the  way i n  which the  author obtained the  
equation f o r  p l a t e s .  Using the  equations of equilibrium i n  displacements : 

L e t  us decompose the  displacements by the  coordinate functions: j351 

i 

1 
They were s imi la r ly  obtained by Professor A. I. Lur'ye i n  h is  book ( r e f .  8 ) .  
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for which u v w correspond with the given values of the displacements on 

the part of the surface C1 where the displacements are given, while all func- 

tions (p 

are arbitrary, satisfying only the conditions of differentiability and linear 
independence. 

0' 0' 0 

Qi,xi in this part of the surface vanish and in the remaining part i' 

where 6a 6b.,Sc. are variations of the undetermined coefficients in expression i' 1 1 (6). 

Let us calculate the action of the mass and surface forces on the selected 
virtual displacements. From the first equation (4) 

Multiplying by the i-th virtual displacement 'pi( x, y, z, )&ai and integrating 
with respect to volume V, we obtain: 

Multiplying both parts of the first of equations (5) by the i-th virtual 
displacement parallel to the x axis and integratine over the surface, we 
obtain : 

.. 

(9) 1, I [(AS -e 2ye,) cos (nr) -t- pew cos (ny) + pe,, cos (nz)] p, (x,  y, z )  $ai dc . 
x. 

.* . -r - \ 

Adding equalities (8) and (9), we arrive at the Galerkin equation 

= 1s [(M + 2yeJ cos (nx )  + pezM cos (ny) +- p.em cos (nz)] 'pi dc . 
\\ 

1, - \ 

The remaining equations may be written comparably. Summing up in 
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the  l e f t  p a r t  the  forces of i n e r t i a ,  we obtain the equation of motion of the  
e l a s t i c  body. 

The s t a t ed  reasoning can obviously be car r ied  t o  the case of any orthogonal 
coordinate system. 

5. The majority of authors f e e l  t h a t  the e s sen t i a l  difference between 
the  Galerkin and R i t z  methods i s  that,  applying the  R i t z  method, it i s  suf-  
f i c i e n t  t o  s a t i s f y  only the  geometric l i m i t i n g  conditions, while i n  applying 
the  Galerkin method, along with the geometric conditions the  dynamic conditions 
must also be s a t i s f i e d  ( t h e  vanishing of zero forces or  moments a t  the f r e e  ends). 

Thus, f o r  example, Biezeno and Grammel ( r e f .  6) c i t e  the conclusion of the  
Galerkin equations for  the  s p a t i a l  problem i n  the  theory of e l a s t i c i t  
the  equivalence of the  r e s u l t s  f o r  both methods i f  only conditions (57 of the  
preceding sect ion a re  sa t i s f i ed .  

and show 

I n  another work Grammel ( ref .  7), using the  "var ia t iona l  pr inciple ,  If c i t e s  
the  problem of eigenvalues t o  the  equation: 

I n  the  author 's  opinion, t he  system of coordinate functions for appl icat ion 
of t he  Galerkin method must a l so  s a t i s f y  a l l  dynamic l imi t ing  conditions i n  r e -  
l a t i o n  t o  which the  nonintegral  terms vanish. 

There i s  no j u s t i f i c a t i o n  f o r  the s t a t e d  requirement t h a t  t he  dynamic 
l imi t ing  conditions be s a t i s f i e d  by coordinate functions when the  G d e r k i n  
method i s  applied. This i s  so, i n  the  f i r s t  place, as i s  shown by the f a c t  t h a t  
t he  Galerkin method and the R i t z  method a r e  equivalent, as i s  shown i n  Section 3 .  
On the  o ther  hand, t h i s  i s  so, as w a s  s h m  i n  a preceding issue,  due t o  the  
equations of t he  theory of e l a s t i c i t y  by the  approximate appl icat ion of the  
element of v i r t u a l  displacements. 

If when solving the problems of mechanics by the  Galerkin method we s t a r t  
from the  p r inc ip l e  of var ia t ion,  i n  which the  system of coordinate functions 
does s a t i s *  the  dynamic conditions, these conditions a re  s a t i s f i e d  "automatically" 
even i f  we s tar t  with the d i f f e r e n t i a l  equation of equilibrium, then it i s  
evident t h a t  we must take i n t o  account the act ion of the surface forces  on t h a t  
p a r t  of t he  border where the  displacements a re  not given. 

I n  equation (l), f o r  example, the dynamic border conditions a r e  s a t i s f i e d  
"automatically" when the nonintegral terms present an addi t ional  act ion of the 
surface forces .  

6. The Galerkin method has found numerous applications i n  the  s t a t i c  
problems i n  the theory of e l a s t i c i t y .  

Here we may point  out one modification of the method: the  Kantorovich- 
10 



Galerkin method, which has been shown t o  be extremely convenient i n  the so lu t ion  

and flexure) and i n  many cases eas i ly  reduces t o  a prec ise  solution. 
I of countless c l a s s i ca l  problems i n  the  theory of e l a s t i c i t y  (Sa in t  Venant to rs ion  

The 

1 Kantorovich method i s  contained bas ica l ly  i n  t h e  following. 1353 

It i s  well-known t h a t  the  problem of the  tors ion  of a weightless prismatic 
rod can be reduced t o  calculat ion of the var ia t ion  of t he  i n t e g r a l  ( r e f .  12): 

According t o  the  Kantorovich var ia t iona l  method, t he  function @ w i l l  be 
sought i n  the  form of the  product: 

where f (  x, y) i s  the a r b i t r a r i l y  chosen function, while 'P( x, y) i s  taken on the  
boundary with the  possible  exception of t he  segments p a r a l l e l  t o  t he  y axis, the  
given values, and cp<x) i s  an unknown function. 

, Subst i tut ing @ i n t o  expression (1) according t o  (2) ,  l e t  us i n t eg ra t e  
with respect t o  y, then l e t  us compose the  Euler equation f o r  t he  determination 
of t he  function dx). 

I n  the  Galerkin-Kantorovich method they proceed immediately from the  d i f -  
, f e r e n t i a l  equation f o r  t h e  determination of the  tors ion  function @ 

and t h e  boundary condition G=O. 

Presenting @ with respect t o  (2), we se l ec t  t h e  v i r t u a l  displacement i n  
t h e  form: 

( 4) hfi, =./(x, y) ( x )  . \ 
Subst i tut ing the  chosen function @ i n t o  equation ( 3 )  with respect t o  ( 2 )  

and multiplying both s ides  of the  equation by the  v i r t u a l  displacment 62, 
l e t  us in t eg ra t e  it with respect t o  y i n  the  corresponding limits; considering 
t h e  a rb i t r a r ines s  of 6cp, we a r r ive  a t  the  ordinary second-order d i f f e r e n t i a l  
equation r e l a t i v e  t o  the  function dx). 

2 The Prandt l  analogy permits us t o  t r e a t  t he  equation 

See i n  more d e t a i l :  Kantorovich and Krylov. Methods f o r  t he  approximate so- 
l u t i o n  of p a r t i a l  d i f f e ren t i a l  equations (Metody priblizhennogo resheniya 
uravneniy v chas tnykh proizvodnykh) . pp. 248-257. 
'Timoshenko. Course i n  the  theory of e l a s t i c i t y  (kurs t e o r i i  uprugosti) 1914 
edi t ion,  Par t  1, p. 160. 11 



' i  

as the  condition of vanishing of t h e  action of a l l  forces  applied t o  the  
membrane on the  chosen v i r t u a l  displacement. 

We note tha t  if @ i s  presented not i n  the  form (2), but i s  expanded 
with respect t o  the  coordinate functions 

where a l l  cp. are equal t o  zero on the  boundary of t h e  transverse sect ion of t h e  
1 

rod, we a r r ive  at the  ordinary Galerkin method. 

The Galerkin-Kantorovich method and the  so lu t ion  (with 'the a id  of t h i s  
method) f o r  the  problem of the  tors ion  of a t r i h e d r a l  prism were expanded f o r  
t he  f i r s t  time, as far as we know, by Academician Galerkin a t  h i s  lec tures  
read i n  1937 for  a group of h i s  co-workers and graduate students.  A precise  
so lu t ion  i s  obtained fo r  t he  case of an equ i l a t e ra l  triangle1. /354 

This method i s  applied ident ica l ly  t o  the  problem of flexure.  

V. Z. Vlasov ( r e f .  16) applied it t o  the  computation for  rectangular plates. 
- _-_- ~ 

-~ 

To i l l u s t r a t e ,  l e t  us examine the problem of t h e  flexure of a 
prism whose transverse sect ion i s  a r igh t  isosceles  t r iangle ,  and the  force Q 
i s  appl ied a t  the  center of grav i ty  of t he  end sec t ion  and p a r a l l e l  t o  t he  x 
axis.  The equations f o r  the  ends of the t r i ang le  are: I 

x+y=o, x-y=o, y=b.\ 
- 

2 The f lexure function cp must be determined from the  equation 

where f (y)  i s  an a rb i t r a ry  function and the  function cp s a t i s f i e s  t h e  boundary 
condition : 

1 

( K u r s  t e o r i i  uprugosti) ( r e f .  8). 
2 

This so lu t ion  i s  presented by Lur'ye i n  h i s  "Course on the  theory of e l a s t i c i t y "  

Timoshenko. Course i n  t h e  theory of e l a s t i c i ty .  1914 edition, Pa r t  1, 
pp. 175-180. 



2 Let us s e t  f(y)=Qy / (2J) .  The on the  l a t e r a l  s ides  of the  t r i ang le  

(2J)-f(y)=O; on the  v e r t i c a l  s ide  y=b we have ay/as=O and, according t o  (8), 
eveywhere on the  boundary. 

On the  boundary, l e t  cp=O. 

Let us s e t  

(9)  p = (X'-f) + (y) , sy = (2- y') $1; (y) . , - -  

A f t e r  subs t i tu t ing  the  value f ' (y)  and expression (9) in to  ( 7 )  fo r  cp, we 
multiply both pa r t s  of the equation obtained by 6y and in tegra te  it with respect  
t o  x. 
equation: 

I n  v i r tue  of the a rb i t ra r iness  of 6cp, we f i n a l l y  obtain the d i f f e r e n t i a l  

The general solut ion t o  equation (10) has the form: 

+=-- 1 1 -- QY -e C, -+ qy-'. 
41-4 -0  J 

The a rb i t r a ry  constants are  determined from t h e  conditions $(b)=O and the  
boundedness of t he  function i n  the  element of t he  coordinate. 

Thus, we obtain: 

1 
Expression (12) i s  a prec ise  solut ion of t he  problem, s ince it s a t i s f i e s  

equation (7) .  We w i l l  not stop a t  t he  solut ion of terms of t h e  corresponding 
tors ion .  A prec ise  solut ion of t h e  Poisson solut ion fo r  the  observed p r o f i l e  

2 
C i t n  be taken from the  work of  B. G.  Galerkin "Torsion of a t r i h e d r a l  prism." 

A. I. Lw'ye ( r e f .  36) applied t h i s  method t o  problems of tors ion.  /355 
1 

solu t ion  of h i s  work "Torsion of a prismwhose base i s  a r igh t  isosceles  t r i -  
angle" Comptes Rendus de 1'Academie des Sciences de Paris ,  Vol. 180, p .  1825, 

Apparently proceeding from d i f f e ren t  calculations, Galerkin obtained t h e  same 

1925 * 
2 

I zves t iya  Rossiyskoy Akademii Nauk, Series 6, No. 12, pp.111-118, 1919. 
13 



It i s  especial ly  valuable t o  apply the Galerkin method t o  questions of 
Calculation of po ten t i a l  energy i s  a the s t rength and s t a b i l i t y  of she l l s .  

very complicated problem i n  t h i s  case, s o  t h a t  t he  Galerkin method, immediately 
becoming the d i f f e r e n t i a l  equation, f u l l y  r ea l i zes  i t s  advantages. 

This method has been used i n  the  calculat ion of the s t rength of cy l indr ica l  
she l l s  on two supports under the  action of i n t e rna l  hydrostat ic  pressure. 

We have used the  d i f f e r e n t i a l  equation f o r  t he  equilibrium of cy l indr ica l  

1 she l l s  obtained by Galerkin . 
The question reduces t o  the in tegra t ion  of t he  p a r t i a l  d i f f e r e n t i a l  equa- 

t i o n  of the  eighth order whose p a r t i a l  der ivat ives  have constant coeff ic ients  
of the  form 

This method aided Galerkin's  success i n  obtaining a precise  so lu t ion  of  

2 t h i s  problem . 
The Galerkin method can apparently be equally successfully applied t o  

the  problem of the  s t a b i l i t y  of cy l indr ica l  she l l s  (work i n  t h i s  d i rec t ion  i s  
being conducted i n  the  Group i n  S t ruc tura l  Mechanics of the  Research I n s t i t u t e  
f o r  Hydraulic Engineering, under the  direct ion of Galerkin) . 

Lur'ye applied the  Galerkin method t o  t h e  problem of the  s t a b i l i t y  of 
she l l s  i n  h i s  course on t h e  theory of e l a s t i c i t y .  

7. The Galerkin method and i t s  various modifications have found numerous 
appl icat ion i n  problems of t h e  osc i l la t ions  of e l a s t i c  and invariable  systems. 

It i s  easy t o  see (p.6 ) t h a t  application of t he  Ritz  method t o  problems 
of motion s t a r t i n g  from the Hamilton pr inc ip le  leads t o  r e su l t s  i den t i ca l  t o  
those of the  appl icat ion of the  Galerkin method s t a r t i n g  from t h e  Lagrange 
equations ( r e f s .  32,35). 
method t o  the  problem of forced vibration, where the Ritz method cannot be 
appl i  e d . 

Lur'ye and Chermarev ( r e f .  9) applied t h e  Galerkin 

1 

ts i l indr icheskoy obolochki) Doklady Akademii Nauk (DAN), 1934. 
Galerkin, B. G. The theory of e l a s t i c  cy l indr ica l  she l l s  ( K  t e o r i i  uprugoy 

For another so lu t ion  see B. G.  Galerkin andYa. I. Perel'man: Stresses  and 
displacements i n  cy l indr ica l  conduits (Napryazheniya i peremeshcheniya v 
tsi l indricheskom truboprovode) . Izvest iya Nauchno-issledovatel' skogo i n s t i t u t a  ~ 

gidrotekhniki,  No.  27. 

14 
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1 I n  many of h i s  works, Professor Duncan uses the  Galerkin method, which 
he considers t o  be an approximate application of t h e  Lagrange equations, t o  

solve many problems concerning the  osc i l la t ions  of e l a s t i c  bodies . H e  showed 
the  equivalence of t he  Galerkin and Rayleigh methods when one of t h e  systems 
of functions i s  used t o  determine the  frequency of f r e e  osc i l la t ions .  
directs pa r t i cu la r  a t ten t ion  t o  the  se lec t ion  of f ac to r s  by which the  d i f -  
f e r e n t i a l  equations a re  multiplied, recommending pursuing the  f a c t  t h a t  the  

Galerkin equations had a determined physical meaning . 

2 

Duncan 

3 /356 

The Galerkin method received fur ther  development i n  problems of o sc i l l a -  
t ions  i n  the  works of Grammel ( ref .  7 ) .  
eigenvalues t o  a homogeneous in t eg ra l  equation which i s  solved e s sen t i a l ly  by 
use of the  Galerkin method (although Grammel goes s o  far as t o  compare h is  
method t o  the  Galerkin method). 

Grammel reduces the  problem of finding 

A s  the  author shows, t he  G r m e l  method, fo r  various systems of coordinate 
functions give fewer and consequently more prec ise  upper l i m i t s  f o r  a l l  eigen- 
values (no t  only f o r  t he  first) than the ordinary Galerkin method. 
Grammel, Weinel ( r e f .  18) gives a method fo r  finding not only eigenvalues, but 
corresponding eigenfunctions with a rb i t r a ry  degrees of accuracy as wel l  (by 
use of the  method of successive approximations) . 

Following 

A. I. Lenchenko applied the  Galerkin method t o  the  problem of the  osc i l l a -  
t ions  of arches ( ref .  3 9 ) .  Ye. P. Grossman applied the  Galerkin method t o  the  
in tegra t ion  of equations of f l u t t e r  ( r e f .  31). 
( r e f .  3 8 ) ,  G. I. Petrov applied the  Galerkin method t o  the  problem of the  s t a -  
b i l i t y  of t he  flow of a viscous f lu id ,  r igorously proving the  solution. 

I n  a recent ly  published work 

Yu. D. Repman (ref .  37) has shown t h a t  appl icat ion of t he  Galerkin method 
t o  the  problem of the  s t a b i l i t y  of e l a s t i c  systems with the  incorrect  se lec t ion  
of functions (without su f f i c i en t  consideration f o r  t he  mechanical propert ies  
of the  functions and t h e i r  derivatives) can lead  to highly erroneous r e s u l t s  
if w e  proceed from t h e  d i f f e r e n t i a l  equation 

L rYi = o !,, 

Repman shows the  necessi ty  of f o r m a l  mathematical proof of t h e  method i n  
i t s  general  form. A t  t h e  same time, the method applied t o  the  corresponding 
1 

2 
Par t icu lar ly ,  he solves the problem of t h e  e f f ec t  of t he  f l e x i b i l i t y  of r ea r  

support of the  surfaces on the  frequency of o sc i l l a t ions  when the  body under- 
goes tors ion .  R and M, No. 1849. 
3 

a l s o  the  work of Yu. D .  Repman ( r e f  37) 

See References. 

B. G. Galerkin a l so  pointed t h i s  out presenting a course on h i s  method. See 



i n t eg ra l  equation 

Y - A [Yl= 0 9 \  ( 2 )  

can be eas i ly  proved with the  a rb i t ra ry  se lec t ion  of a completely orthogonal 
system of functions. 

I n  the  work of Hencky, t he  Galerkin method a l so  found appl icat ion i n  t h e  
D. Yu. Panov applied it t o  several  nonlinear theory of p l a s t i c i t y  ( r e f .  3).  

problems i n  t h e  theory of e l a s t i c i t y  ( r e f .  1 5 ) .  

The method of B. G .  Galerkin cam a l s o  be applied as the  method of solving 
d i f f e ren t i a l  and i n t e g r a l  equations i n  general. 

Thus, i n  t he  work of Jones and Scan ( r e f .  25) severa l  examples of t he  
so lu t ion  of d i f f e r e n t i a l  equations according t o  the  Galerkin method are  applied 
and compared with other methods (Taylor,  l e a s t  squares, "collocations").  The 
Galerkin method shows i t s e l f  t o  be most effect ive.  
absolutely no mathematical proof i n  the work. 
proof ( ref .  11) of the  identicalness of t he  Galerkin method and the method of 
l e a s t  squares i n  the  solut ion of ordinary d i f f e r e n t i a l  equations when n-. 

Unfortunately, there  i s  
Error i s  admitted i n  the  Duncan 

1. 
2 .  

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 
11. 
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